半岛官网入口体育太阳能电池板及其工作原理

  新闻资讯     |      2024-03-15 01:40

  半岛官网入口体育太阳能电池板及其工作原理对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺,目前采用选择扩散,150mm×150mm电池转换效率达到16.4%,n、n区域的表面方块电阻分别为20Ω和80Ω。

  通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米),缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高。因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高,工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线微米),形成mushroom—like状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。

  如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着色,大约需要5分钟,直到膜层变成深紫色,如果膜层两面着色的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干。

  太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是:

  当然,其主要目标是降低太阳电池的生产成本,目前多晶硅电池的主要发展方向朝着大面积、薄衬底,例如,市场上可见到125mm×125mm、150mm×150mm甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下,效率得到大幅度的提高。日本京磁(Kyocera)公司150mm×150mm的电池小批量生产的光电转换效率达到17.1%半岛体育,该公司1998年的生产量达到25.4MW。

  众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳能电池的光电转换效率,降低生产成本应该是我们追求的最大目标。从目前国际太阳能电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为: [1]可供应太阳能电池的头尾料愈来愈少;[2]对太阳能电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%,利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。

  对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法:

  用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~900nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当,而在(100)面单晶硅化学制作绒面的反射率为11%。用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。

  在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线微米),一般采用的方法为光刻、电子束蒸发、电子镀。工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。

  多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。

  对于Mc-Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面,在氢气氛中退火可使钝化效果更加明显。采用PECVD淀积氮化硅近期正面十分有效,因为在成膜的过程中具有加氢的效果,该工艺也可应用于规模化生产中,应用Remote PECVD Si3N4可使表面复合速度小于20cm/s。

  应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。掩膜层也可用丝网印刷的方法形成。

  实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。

  由染料着色的TiO2为电子流出的一极(即负极)。正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的哪一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙。如图所示,把非导电面标上‘’,然后用铅笔在导电面上均匀地涂上一层石墨。

  太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做光生伏打效应”,太阳电池就是利用这种效应制成的。

  当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。

  Mc-Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。

  对于Mc-Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc-Si的少子扩散长度提高两个数量级。在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv,转换效率超过17%。

  太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:

  基本上有三种方法:通过反射镜及光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。

  太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。)

  利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料。如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可。

  把着色后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上。把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线。这样,你的太阳能电池就做成了。

  该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在450~1000微米光谱范围的反射率可小于2%。仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。

  对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5, PECVD沉积Si3N3等,ZnO导电膜也可作为减反材料。

  在Mc-Si电池中,背pp结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVD SiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc-Si产生不利的影响。到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。